
CS4605/Lab 6

George W. Dinolt

September 1, 2004

1 Introduction

The goal of this lab is to illustrate more about the “layering” approach for security
models. Another consequence of working on this exercise (I hope) is that you will
get a better appreciation of what needs to be proved where. You will note that the
order of application controls how things are expanded and as a result whether the
proof works or not.

You may want to study the spec as you read the rest of the lab. The spec1 uses
thepvssyntax to illustrate how the layers could be built and how the mappings are
directly achieved between layers. To achieve the goal, I would like you to prove
the final theorem:fs_is_secure . If you use the first specification, you can do
this in steps by proving thelemmasand tccs in the specifications as well as the
preceding lemmas. The final theorem is a direct result of the previous work.

2 Some Background

2.1 Level 1 - Abstract States

As you know, we have described a “top level” model, the specification works on
sequences of abstract things calledstates . There is a notion that some states are
secureand others are not. The sequences are formed by a state transition function
from state to state. If the sequence of states formed this way satisfy:

1This is a “hot link” in acrobat and will point you to a file
http://www.nps.navy.mil/cs/Dinolt/Courses/AY2004/Summer/CS4605/LABS/lab6/esectheory.pvs
in my home directory.You can also find the file onproof in the file
/disk1/cisr/Labs/lab6/e sec theory.pvs

1

file:e_sec_theory.pvs
http://www.nps.navy.mil/cs/Dinolt/Courses/AY2004/Summer/CS4605/Labs/lab6/e_sec_theory.pvs


1. The initial state of the sequence is secure and

2. The transformation rule guarantees that every state in the sequence after the
initial one is generated by a transform (or transition) from the previous one

3. Every transform (or transition) from a secure state yields a secure state

then every element of the sequence will be secure.
This structure is described in thee_sec_theory specification in the file.

The secureinitial state, transition is secureandsequences are formed by transi-
tionsare all assumptions about the types that are input into the specification.

2.2 Level 2 - Defining states

In this level (triv_state ) we particularize the notion of a State. We provide a
more concrete definition of state, along with this, we define the notions ofsecure
stateandtransform. In our simple case, the state consists of 3 entities,

1. An input wire,

2. An output wire and

3. a piece of data.

The interpretation is that the data was received on the input wire and sent on
the output wire. Note that we don’t care what specific “types” are used on the
wires of the data.

We also define a security label set and show how to associate security labels
with wires and security labels with states.

These are still “abstract” definitions that are not instantiated, i.e. we still don’t
have details about the types used for wires, security labels, data. An implemen-
tation will have to instantiate these. Note that we are would still like to be able
to “prove” that any sequence of the appropriate type has the secure property, but
note, that this “state” definition does not include sequences.

We add the notion of sequences and the assumptions on generating them in the
specificationtriv_system . It is at this point that we have a general theory that
now includes sequences and secure sequences. The security of these sequences
is obtained automatically (auto-magically) by includinge_sec_theory in the
specification. This forces us to prove a series of “tccs” about the transitions and
security. But these are almost automatic. We need only reference the assumptions
about the inputs oftriv_system .

2



2.3 Level 3 - Defining an instance of a system

This is the new concept introduced in this specification. In this part we provide
an instantiation for a sample system (sample_system in the files) that describe
how each of the various pieces are instantiated. For example we define the input
and output wires to be natural numbers (less than6) and security labels to be
natural numbers0 and1. We also construct arbitrary functions that map wires
into security labels, etc..

Within the sample system we construct a particular sequence. The goal of this
exercise is to prove that this sequence is secure.

3 Lab Details

3.1 Comments on prover commands

You may find the following information useful in completing your proofs.

• “AXIOMS” and “ASSUMPTIONS” can be applied in the same way as lem-
mas and theorems in “use” and “lemma” statements.

• “rem” stands for the remainder (modulus) function.rem(6)(1) = 1 while
rem(6)(17) = 5. You can find out more about “rem” in the “prelude.pvs”
file. An interesting lemma from the prelude that you may want to use (with-
out proof) isrem_zero which claims thatrem(n)(0) = 0 for all natural
numbersn.

• You probably want to read up on the “inst” prover command. The syntax
is a little strange but you can tell “inst” what to substitute for what and in
which sequent or consequent. You use “inst” in quantified expressions.

• You probably want to use the “replace” prover command to do substitution.
The command

(replace − 1 − 2 rl)

requests the prover to use the equality in sequent−1 replacing the occur-
rences of the right hand side of the equality with the left hand side in sequent
−2.

• the “if-lift” command is useful for managing if statements in the “conse-
quent”

3



• The “expand” command is often useful. You use expand to expand func-
tions in either sequents or consequents. Note that once a sequence has been
“defined,” you can expand that as well. Note thatnth(fs, 0) expands to
fs(0), using(expand ‘‘nth’’) . If fs(0) is defined to have a value,
then one can(expand ‘‘fs’’) to see what that value is.

• You can find the definition of “every” in the prelude. You can, of course,
expand that.

• You may need to generate and prove sometccs , as was demonstrated in
class.

• You may need to use the “hide” command to help the system instantiate the
right things when apply either the “use” or “lemma” commands. Applica-
tion of these commands may cause the “0th” element of the sequence to be
instantiated when you really want the “nth element. The “hide” command
can be used to remove a sequent from consideration, leaving the right thing.

3.2 Deliverables

There are two deliverables for this lab.

1. A picture (with discussion if necessary) that shows the layering and how the
proofs should work using the layering.

2. The output of the show-proofs-importchain emacs command, issued from
the bottom specification of the file. You know you are okay if this shows
that the last “theorem” is complete.

Good Luck!

4


	Introduction
	Some Background
	Level 1 - Abstract States
	Level 2 - Defining states
	Level 3 - Defining an instance of a system

	Lab Details
	Comments on prover commands
	Deliverables


